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How does quantum impenetrability affect Aharonov-Bohm 
scattering? 

G N Afanasiev and V M Shilov 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow 
District, 141980 USSR 

Received 22 March 1990 

Abstract. It is shown that different forms of quantum inpenetrability lead to different 
physical consequences. This should be kept in mind in analysing experimental data. The 
relativistic impenetrability conditions are considered and the corresponding relativistic 
Aharonov-Bohm cross-sections are obtained. The possibility of the AB effect occurring in 
simply-connected space regions is discussed. 

1. Introduction 

The Aharonov-Bohm (AB)  effect [ 11 is sometimes defined as the quantum manifestation 
of inaccessible fields. To obtain inaccessibility, one surrounds a region with E, H # 0 
by an impenetrable screen of the suitable geometrical form. It is the goal of the present 
treatment to analyse different forms of impenetrability conditions. We say that a surface 
S is impenetrable for incoming particles when a component of quantum probability 
current normal to S vanishes at S. The plan of our exposition is as follows. In section 
2 we study different non-relativistic impenetrability conditions and find that they lead 
to different physical situations. This should be kept in mind when comparing with 
experimental data. In the appendices we demonstrate that the simply-connected nature 
of a region of space does not guarantee the absence of the AB effect in it. Definite 
criteria are given for this. In section 3 we consider different relativistic impenetrability 
conditions and evaluate the corresponding relativistic AB scattering cross sections. 

2. Non-relativistic impenetrability conditions 

2.1. The impenetrable cylindrical solenoid 

Consider an infinite cylindrical solenoid embedded into the impenetrable cylinder C 
of radius R (figure 1). In the non-relativistic case the quantum probability current is 
determined by 

h -  e 
21CL CLC 

j=-($grad +-$grad 6)--Al+12. 

For the case under consideration the single non-vanishing component of the vector 
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Figure 1. Shown is an infinite cylindrical solenoid 
(darkened) imbedded into the infinite cylinder C of 
radius R. On the surface of C the impenetrability 
BC is imposed. The arrows represent the wavevector 
of the incoming particles. 
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Figure 2. The non-relativistic intensity of particle 
scattering of the cylinder C for the case when the 
impenetrability BC ( 2 . 2 )  is imposed. The intensity is 
defined as the ratio of the scattering cross section 
(2.9) to the geometrical one ( = 2 R ) .  The intensity 
thus obtained is dimensionless. Curves 1 and 2 refer 
to the zero magnetic flux inside the solenoid and 
to y ( =  ecp/ h c )  =$, respectively. The parameter kR = 
10. 

potential (VP) is A, = 4 / 2 ~ p  ( 4  is the magnetic field flux inside the solenoid). The 
aforementioned impenetrability condition ( j ,  = 0) reduces to 

a$ - a +  
dP aP 

*--*-=o at p = R. 

Usually, one satisfies this condition simply by putting 

* = 0  at p = R. (2.2) 
There are a variety of other ways to meet (2.1). Here are the two simplest 

a t p = R  a* -=o  
aP 

a t p = R  a* -=a* 
JP 

(2.3) 

(2.4) 

( a  is an arbitrary real constant). In either case the wavefunction can be presented as 

* = $AB+ CLs. (2.5) 
Here, +AB is the scattering wavefunction for the infinitely thin ( k R  << 1) non-shielded 

solenoid 

+AB =E e x ~ [ i ~ ( l m l  -I Im - Y I )  + i m ~ I J l ~ - , i ( k p )  (2.6) 
( k 2 = 2 p E / h 2 ,  y = e 4 / h c ) .  From now on we will assume that a summation index, if 
not indicated otherwise, should range from -a to CO. The asymptotic form of (LAB 

which is valid for all scattering angles (p was first obtained in [2]: 
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For angles cp not too small ( k p  sin? (p/2 >> 1) one recovers the asymptotic behaviour 
given in [ l ]  

1 + i y (  cp - x ) ]  + - exp(i k p  ).fAH( cp 1 (LAB = exp[ i 6 

1 sin’ xy 
%j(d=~..-. xh sin- cpI2’ 

(For definiteness and without loss of generality, we choose 0 s  y 
in (2 .5)  takes into account the shielding of the solenoid: 

1). The second term 

(Ls=C C,,, exp[ix(lml-!lm - ~l)+imcplH;,:,’-,~(kp). (2.8) 

The coefficients C,, entering into (2.8) are determined by the boundary conditions 
(BC) at p = R 

c,,, = -J,,?,-?lH:!!-,l 
c,,, = - j ,,, - ? i fi ;,!;- 

for BC (2.2) 

for BC (2.3) 

From now on we d o  not indicate the arguments of the Bessel and Hankel functions 
if they are kR. The dot over these functions represents the derivative WRT their 
arguments. As p + cc it follows from (2.8) that 

I ?  

1 C, exp[ix(lml-lm-yi)+imcF]. 

The total scattering amplitude and  cross section are 

f = f A B  + f s  (T = 1 f 1 2 .  (2.9) 
We observe the explicit dependence of the scattering cross section on the concrete 
realization of the impenetrability BC (2.1). The typical cross sections shown in figures 
2-4 demonstrate strong sensitivity to the particular choice O f  Bc. Although BC (2.2)-(2.4) 
are trivial from the mathematical standpoint (they correspond to the Dirichlet, 
Neumann and  mixed boundary problems, respectively), they are definitely not trivial 
from the physical viewpoint. In fact, (2.2)-(2.4) represent different definitions of 
quantum impenetrability. This should not be overlooked in the analysis of the experi- 
mental data. At this stage, we are not interested in the wavefunction behaviour inside 
C. It is determined by the particular form of the repulsive potential inside C. A 
reservation is needed. The presentation of the wavefunctions in the form (2 .S ) ,  (2.6) 
and (2.8) implies single-valuedness of the wavefunctions and the BC corresponding to 
them. It is known [3] that the A B  effect exists if only single-valued wavefunctions are 
used. Mathematically, the multivaluedness of the wavefunctions is not abandoned in 
multiply connected regions of space (the famous Pauli proof of the single-valuedness 
of the wavefunctions holds only in simply connected space regions). In  fact, the recent 
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Figure 3. The same as  in figure 2 but for the case 
when RC ( 2 . 3 )  is imposed. 

Scattering angle (Deg) 

Figure 4. The same as  in figure 2 for the case when 
RC' (2 .4)  is imposed. The parameter a = I .  

discussion on the existence of the A B  effect is due to this theoretical ambiguity. Finally, 
we would like to mention two earlier papers [4] in which the influence of the change 
of boundary conditions on the scattering process was studied (irrespective of the A B  

effect). 

2.2. Scattering on the impenetrable sphere 

Consider now the impenetrable sphere S of radius R.  In  the absence of the magnetic 
field the quantum impenetrability condition is: 

The simplest solutions of these equations are as follows: 

& = O  at r = R  

9- - 0  at r = R  
ar 

at r = R  atC, -=a* 
ar 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 

(a is real). 
In either of these cases the wavefunction and scattering amplitude are given by 

&=exp( ikz )+  &E i'(21+ l)C,H):',,,(kr)P/(cos e )  

(2.14) 
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where 

for BC (2.11) 

for BC (2.12) 

The corresponding cross sections (a=lfs12) are shown in figure 5. As for the 
impenetrable cylinder, the strong dependence on the particular realization of the 
impenetrability BC is observed. 

i 

Figure 5. The non-relativistic intensity of particle 
scattering on the impenetrable sphere S of radius R 
The intensity is defined as the ratio of the scattering 
cross section (2 14) to the geometrical one ( =  TR' )  
The curves 1, 2 and 3 refer to the impenetrability BC 

0 20 40 60 80 (2  l l ) ,  (2 12) and (2 13)  (with a = l ) ,  respectively 
The parameter kR = 10 

- - - - - _ - _ -  

t 

10 2: 

l o  :-1 Scattering angle (Deg) 

2.3. Impenetrable sphere with a magnetic field inside it 

Install into the sphere S the toroidal solenoid ( p  - d) '+ z2  = R i  (figure 6 ) .  The magnetic 
field differs from zero only inside the solenoid (H, = H, = 0, H, = g / p ,  g = 
( 1 / 2 ~ ) 4 ( d  -a)-', 4 is the magnetic flux inside the solenoid). In the Coulomb 
gauge two non-vanishing components of the VP are A, and A' [ 5 ] .  At large distances 
they fall as r-3 

.rrg dR; .rrg d R i  
2r3 4r3 

A,---- COS e A' -- sin 8. 

We present here their explicit expressions for the infinitely thin (Ro<< d )  solenoid [ 5 ] :  

1 
' - 2(dr sin sh 

A -  Rig - ( d  sin eQ?1,2(~h p )  - rQ:/,(ch p ) )  

(2.15) 
Rigd cos e 1 

2(dr sin sh p 
A = -  - QL1,2(Ch P I .  
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Figure 6 .  Shown is the toroidal solenoid (darkened) imbedded into the impenetrable sphere 
S. On its surface the impenetrability BC (2.16) is imposed. 

(Here ch p = ( r 2 +  d2) /2 d r  sin 8, QT is a Legendre function of the second kind.) As 
A ,  # 0 outside the sphere S, the impenetrability condition is modified: 

(2.16) 

Now, the following question arises: does the impenetrability condition (2.16) guarantee 
the absence of observable effects associated with the non-vanishing of VP outside the 
sphere S? At first glance the answer is almost evident. Indeed, after the BC at r = R is 
imposed, one operates in a simply connected space (the exterior of the space S). 
Usually, it is believed [6] that the observable effects are impossible in the simply 
connected region with H = 0 (as it is possible to make there a gauge transformation 
which eliminates the VP). The counter-examples presented in a very interesting paper 
[7], published in this journal, seem to cast doubt on this statement. Because of this, 
very particular case should be considered separately without appeal to the simple 
connectedness arguments. In [ 81 an ingenious gedanken experiment (with no reliance 
on the AB effect) was proposed, permitting one in principle to measure phaseshift 
effects in simply connected space regions. Thus the observability of physical effects in 
simply connected regions, having fundamental importance, deserves special consider- 
ation. As these questions are slightly out of the mainstream of the present exposition, 
we only sketch them here. All details may be found in the appendices. Mathematically, 
a space region R M  is multiply connected if there is a closed contour in it which cannot 
be contracted into a point without leaving R M .  For example, the space region outside 
the torus T is multiply connected (the contour passing through the torus hole cannot 
be contracted to a point). Now, surround T by the sphere S. The space region Rs 
lying outside S is simply connected (each contour outside S can be contracted to a 
point). The Schrodinger equation may be solved outside S if some BC is imposed on 
its surface. For arbitrary BC the particles in general penetrate (as j ,  # 0) from Rs to 
the multiply connected region R ,  lying between the torus T and the surface of S. The 
switching on of the magnetic field inside T may lead (for the same BC on the surface 
of S )  to observable effects in the simply connected space region lying outside S even 
if the torus is impenetrable for particles. To avoid such observable effects, the gauge- 
invariant BC should be imposed on the surface of S. As the impenetrability BC (2.16) 
is gauge invariant, so it guarantees the absence of observable effects. The arising 
complications are discussed in the appendices. 
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3. Relativistic impenetrability conditions and the AB effect 

3.1. Relativistic scattering on the cylindrical solenoid 

Now we turn to the relativistic AB effect. To the best of our knowledge there are only 
a few references treating this subject. It was shown in [9] that for the infinitely thin 
solenoid the relativistic AB scattering cross section is times the non-relativistic 
one. Relativistic scattering on the impenetrable cylindrical solenoid of finite radius 
was studied in [ 101. The authors of [ 101 claim that it is impossible for all components 
of the Dirac wavefunctions to vanish at the surface of C. Relativistic scattering on a 
finite cylindrical potential barrier of a constant value was investigated in [ I l l .  It was 
shown there that it is impossible to achieve continuity for all components of'the Dirac 
wavefunction and  their derivatives at the boundary of this barrier. In typical experiments 
[ 121 testing the A B  effect, the electron energy is of the order 100 keV, which corresponds 
to p (= u / c )  = 0.6. This obliges us to analyse this situation more carefully. 

Outside the cylinder C the wavefunction satisfies the Dirac equation 

i e  
H* = sl)l H = --ihca (v -z .> + pc2p 

We now develop I) into states with definite projection of the angular momentum 

J3 = h a  - + - 1 h x3 .=(U 0)  
1 a 9  2 O a  

$3m = u 3 m  exp(imcp) IL4m = u d m  exp[i(m + 1 ) c ~ l .  
It turns out that U1, and  U,, are linear combinations of Bessel functions: 

U ,  m = Am [ J m - y (  k ~ )  + B m H t ) y ( k ~ ) I  

u > m  = C m  [ J  m + 1 - y (  k~ + D m H :  !+I - y ( kp )I  
( k  = q c 4 /  hc).  Small components of the Dirac wavefunction are expressed 
through large U1, and  U,, 

m + l - y  
= -iq (&+ kP ) U,, 

= -iqC,[J,-,( kp) + D,H:!?( kp)] 
(3.2) 

= -iq Am[Jm+l-y(k~)+ BmHtLl -y (k~) I  
(77 = (( 8 - p c 2 ) / (  8 + p ~ ' ) ) ' ' ~ ) .  For definiteness we choose the incoming wave to be 
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propagating in the positive x direction and having positive energy and helicity 

This fixes both +,,, and the coefficients A, and C, 
$,,,=exp[ikx+iy(cp - r ) ] U ,  

A ,  = e x p ( i r r y )  m + y + l  

We insert A, and C, into (3.1) and present + in the form 

Here 
* = ( * A B + W - J q + * S .  

is determined by (2.6) and 

Y - m  -X  

4; = i sin rry 1 e x p ( i n T )  If:?, (kp) exp(imcp) 
m = O  

*s = [ i j ]  
*,” 

As p + oc one gets the following asymptotic behaviour for 4 :  
1 

II, =exp[ikx+iy(cp - rr)] U ,  +- exp(ikp)f (cp)  
J;; 

where the spinorial scattering amplitude is 

(3.3) 

(3.4) 

(3.5) 

The scattering cross section is 

f7 = t ( l f i l ’ +  l f? I2 )  (3.6) 
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The coefficients B ,  and D, are fixed by the boundary condition at p = R.  For example, 
we may require the large components of the Dirac wavefunction to vanish: 

Insert these values into (3.2) and obtain for p = R 

In the mentioned experiments on the A B  effect [ 121 kR - lo6. We replace Bessel and  
Neumann functions with their asymptotic values: I U3,I2 1 U4,I2 L- 2v2 / (  T k R )  << 1. We 
see that although the non-vanishing of small components of the Dirac wavefunction 
indeed takes place [lo], it is negligible for the existing experimental facilities. Now 
we insert (3.7) into (3.5) and (3.6): 

J m - y  
fl =fi =f= - - exp(iTy) - exp( i mcp). 

d n : k  H ; ! y  
This sum contains Bessel functions with both positive and negative indices. Using the 
well known identities 

J - ,  = exp( - i r v ) J v  + i sin n v .  H:" H?: = exp(i7rv)Hv' 
we remove the latter and get 

Typical cross-sections ( a  = if[') are shown in figure 7 .  The amplitude (3.8) has the 
same form as the non-relativistic one (2.9). The only difference is in the meaning of 

'0 / '  ' ' I ' ' ' ' ' ' ' ' 

1 
'0 , '  ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' j 

1 

10 

0 20 40 60 80 0 60 80 40 20 
Scattering angle (Deg)  Scattering angle (Deg) 

Figure 7. The relativistic intensity of the 48 electron 
scattering on  the impenetrable cylinder C of radius 
R for y = 0  (curve 1) and y = f  (curve 2 ) .  The 
impenetrability BC is chosen as the vanishing of large 
components of the Dirac wavefunction. The kinetic 
electron energy is 150 keV. The parameter k R  = 10. 

Figure 8. The same as in figure 7 but for the 
impenetrability condition (3.1 1 j ,  
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the wavenumber k. The relativistic k occurring in (3.8) is expressed through the 
non-relativistic k occurring in (2.9) in the same way as for momenta: k(3.8) = 
k ( 2 , 9 ) / m .  This means that it is enough to substitute in (2.9) the relativistic k 
instead of non-relativistic one in order to obtain the relativistic amplitude (3.8). A 
posteriori this fact may be understood as follows: the particular components of the 
Dirac wavefunction in the region where H = 0 satisfies a second-order differential 
equation. It formally coincides with the non-relativistic Schrodinger equation if the 
above substitution of the wavenumbers is made. For the infinitely thin solenoid (kR << 1) 
the sum in (3.8) can be neglected and 

Due to the different meaning of k in (3.9) and in (2.7), CT~;=-  vy:re’, which 
agrees with [9]. 

We see that the non-vanishing of small components of the Dirac wavefunction 
observed in [SI  is due to the non-relativistic nature of the boundary condition at p = R. 
The impenetrability condition may be exactly fulfilled if one imposes the relativistic 
boundary condition. To be precise, we require the vanishing of the normal (to the 
surface of C)  component of the Dirac probability current: n - j ,  = 0 for p = R. Here n 
is the normal to the surface of C ( n  = (cos cp, sin cp, 0; 0 ) )  and  j ,  = ec$-cY$. As a result, 
one gets 

$ + a n $  = 0 for p = R. (3.10) 
(This relation is widely used in the M I T  bag model, see, e.g., [13].) This quadratic 
expression is not convenient for practical use. The following relativistic boundary 
condition, which is linear in the Dirac wavefunction components, is also used in the 
M I T  bag model [13]: 

i a n $  = p$ for p = R. (3.11) 
It is easy to see that (3.10) follows from (3.11). The reverse is not true. Equation (3.11) 
being applied to the Dirac wavefunction (3.1) results in: U,, = -iUl,,,, U,, = -iU2, 
for p = R. Thus the coefficients B,, and D, may be evaluated 

B = -  J n i - y +  7 J m - 1 - v  
m H I I !  m - y + 7 H : L l - y  

Substitute them into (3.5): 

Now consider the limiting cases of these equations. 



Quantum impenetrability and the AB effect 5195 

(a)  Zero magnetic flux inside C ( y  = 0): 
7 

(3.13) 

(b) Infinitely thin solenoid (kR << 1). Contrary to the non-relativistic case, the A B  

amplitudes are different for y < $ and y > f 
f sin .rry exp(-icp/2) 

f f 2 =  -- f o r i < y < l .  

sin .rry exp(icp/2) f - -- for O <  y < i  ' -  XGZ sincp/2 2 -  LGZ s in912  

sin r y  exp(i icp) 
I -  &GZ sin(p/2 JZZ sin P O / ~  

(3.14) sin .rry exp(icp12) 

Nevertheless, the relation between the relativistic and non-relativistic cross sections 
is the same as before: 

= 4-2 ,?;re1 
1 - P  

It is surprising that initial expressions (3.12) for f l  a n d f ,  are continuous WRT y, while 
f l  and f2 given by (3.14) suffer a finite jump at y = $. The origin of this imaginary 
controversy becomes clear ifwe consider the limit of (3.12) for kR + 0 without specifying 
y. Retaining in (3.12) only non-vanishing terms, we obtain 

Now we take into account that for kR + 0 

Jy-I r ( 1 -  Y ) '  
It is convenient to present the first factor of this equation in the form 

If kR is small enough that l (1-2y)  In(kRO/Z)l>> 1, then 

(p)"' = { 0 for O < y < $  
a; for h <  y <  1 

and we arrive at (3.14). On the other hand, if y is so close to that I (  1 - 2y)  In( X:R/2)l << 1, 
then 

kR 
2 1 + ( 1 - 2 y )  In-. 

2 
Substituting this into f l  and f2,  we obtain - 
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Equations (3.14) and (3.15) correspond to different physical situations. The fact that 
different orders of limiting procedures may lead to different physics is not new. 
Particularly, the recent discussion on the validity of the first Born approximation for 
the description of the A B  effect (see, e.g. [14]) is due to this fact. In figure 8, the 
scattering cross sections corresponding to the exact relativistic impenetrability BC (3.1 1) 
are given. Comparing them with the approximately relativistic cross sections presented 
in figure 7, we observe the perfect agreement between them in spite of the sharp 
difference between the corresponding scattering amplitudes (3.8) and (3.12). This 
remains an enigma for us. We summarize briefly the content of this section. We obtain 
approximate ((3.8), (3.9)) and exact ((3.12)-(3.14)) relativistic scattering amplitudes. 
They correspond to the non-relativistic (3.7) and relativistic (3.1 1) impenetrability 
conditions, respectively. 

3.2. Relativistic scattering on the impenetrable sphere 

Let an incoming wave propagate in the positive z direction with positive energy and 
helicity. Then, 

7 4 1 1 2  1 
A C  

k = - ( g 2 - p - C  ) . 

Let this incoming wave be scattered by the impenetrable sphere S of radius R.  The 
complete wavefunction is rC, = CL,,,, + C L s .  As r + cc 

The components1; of the spinorial scattering amplitude are determined by the particular 
choice of the impenetrability condition. For instance, we may require the large com- 
ponents of the Dirac wavefunction to vanish at r = R. Then, 

(3.15 b )  

f4=,exp(iv)C i77 (‘--)p;(cos J l - 1  / 2  J / + 3 1 2  e)  
I - 1 / 2  HI::/2 

where P;”(cos e)  are the Legendre functions of the first kind. It turns out that small 
components of the Dirac wavefunction are of order ( k R ) - ’  at r = R. The other possible 
choice is the disappearance of the Dirac probability current at r = R. This is fulfilled if 

ian@ = /3+ (3.16) 
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Figure 9. The relativistic intensity of electron scatter- 
ing on the impenetrable sphere S of radius R. Curves 
1 and 2 correspond to the vanishing of large com- , , , I I I ,  t l l 8 8 l '  

0 : LI 20 40 ...-. ...--._ 60 ..__...____ 80 

Here n is the normal to the surface of S 

n = (sin 0 cos cp, sin 8 sin cp, cos t9,O). 

The following components of the spinorial amplitude correspond to this impenetrability 
condition: 

f 3  = 1 [ ICI + ( 1 + 1 ) d,,,] Pl (cos 0 )  

(3.17) 

Here 

For either of these impenetrability conditions the cross section is given by 

The corresponding angular dependences are shown in figure 9. As for the case of the 
infinite cylinder, we observe an excellent agreement between cross sections correspond- 
ing to quite different impenetrability BC (in spite of the sharp difference between the 
scattering amplitudes (3.15) and (3.17)). 

4. Discussion 

We have seen that there is a variety of theoretical possibilities €or preventing the 
trapping of incoming particles into the excluded region. This is bad. Fortunately, only 



5198 G N Afanasiev and V M Shilov 

few of them could be easily realized in practice. In a non-relativistic case the most 
promising seems to be the BC 9 = 0 at the boundary of the inaccessible region. In this 
case, the normal component of the probability current j (see section 2 )  vanishes on 
that boundary for any value of the VP A. This BC is easy to realize experimentally: it 
is enough to switch on the large repulsion inside the inaccessible region where H # 0. 
As an illustration of the complications arising from another choice of the impenetrability 
condition, consider how one could verify experimentally the non-existence of the A B  

effect in simply connected (in the physical sense) regions of space. To do this, we may 
study, e.g., the charge particle diffraction on the impenetrable sphere S with and 
without a toroidal solenoid inside it. Let the impenetrability condition in the absence 
of the magnetic field be chosen as a + , / a r  = 0 at r = R. Now insert the toroidal solenoid 
inside S. As the radial component of the VP does not now vanish outside S, it is 
impossible to vanish the normal component o f j  (see (2.16)) using the same BC a g / a r  = 0 
for r = R (moreover, if this BC were nevertheless realized, the inevitable shift of the 
diffraction pattern should take place due to particle penetration inside the sphere S 
where the toroidal solenoid is situated). The transformed impenetrability condition 
(satisfying j ,  = 0 at r = R )  should be of the form (this follows from (A5.2)) 

where the function (Y is defined by (A3.1) and +o is the solution of the free Schrodinger 
equation with the boundary condition a+bo/ar = 0 at r = R. It is not clear how this rather 
complicated BC can be realized experimentally. 

We conclude: the BC $ = 0 imposed at the boundary of the excluded region has 
universal meaning in the non-relativistic case and does not lead to experimental 
complications. On the other hand there are no solutions of the Dirac equation meeting 
the = 0 condition at the frontier of the inaccessible region. This means that the $ = 0 
BC partly loses its physical sense and uniqueness in the relativistic case. The BC (3.7) 
(which leads to the disappearance of the large components of the Dirac wavefunction 
and to the non-vanishing at the normal component of the relativistic probability current) 
is easy to realize experimentally by creating the large repulsive barrier. In theory, the 
truly relativistic BC (3.10) or (3 .11 )  seems to be more promising (for which the normal 
component of the same current vanishes), but it is not clear how to prepare them in 
practice. A good numerical coincidence of the cross sections corresponding to BC (3.7) 
and (3.11) observed in the previous section removes this insufficiency. In [15] the 
electron scattering on the impenetrable toroidal solenoid was studied. As the impenetra- 
bility was achieved by imposing the i,b = 0 BC on its surface, these calculations can be 
useful in analysing the existing experimental data [ 121. 

Appendix 1 

The authors of [7] consider the toroidal cavity T ( a ,  < p  < a,,  / z /  < b,) with non- 
vanishing magnetic field inside it 

( A l . l )  

( 4  is the magnetic field flux). Outside T the magnetic field is zero everywhere. 
Furthermore, two different VP are presented in [7], which give the same magnetic field 
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(Al .1 ) .  They are equal to zero for / z /  > b , .  For /zI < b, they are defined as 

for p < a ,  

for a, < p < a, 

\O for p > a, 

for p < a ,  

( A l . 2 )  

(A1.3) 

Let the charge particle be confined to the cylindrical cavity C ( [ z l <  b (b  ,< b , ) ,  p < a 
( a  < a , ) ) .  Now impose on  the wavefunction the Dirichlet BC in the radial direction 
(IC, = 0 for p = a )  and periodic BC in the z direction 

$ ( z =  b)  = I , ! / ( z  -b).  

The solutions of the Schrodinger equation ( S E )  

with the chosen BC of the form 

(A1.4) 

(A1.5) 

(Al .6)  

Here ]Ims means the S th  non-vanishing zero of the Bessel function J m ( x 1 .  To these 
wavefunctions correspond eigenvalues 

= hZ [ !!$ + ( ?)’] 
2 P  

(A1.7) 
for A = A z  

Clearly, E!,:& # EL:&, i.e. eigenvalues of the SE in the simply connected region with 
H = 0 depend on  the particular choice of the VP. This seems strange, as it is invariant 
relative to the gauge transformation 

A , = A z + g r a d , y  = 6, exp( $) (A1.8) 

where the function ,y equals 42/26 ,  for 1zI < b , ,  x = f d  for z > 6 ,  and -44 for z < - b , .  
Let IC,, satisfy the same periodic BC (A1.4). It follows from (A1.8) that 3, does not 
meet this BC 

.. 
$,(z = -b )  = $,(z = b)  exp (z) # G2(z  = b).  
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Now the difference between E"' and E'" becomes understandable as the corresponding 
wavefunctions and t,b2 are not related by a gauge transformation. In  other words, 
the BC (A1.4) is not gauge invariant. Although we can impose this BC in one particular 
gauge, we cannot require its fulfillment in the other gauge if we wish to stay in the 
framework of a gauge invariant theory. The gauge invariance of the SE is not enough 
for the absence of observable effects. The BC should be gauge invariant too. 

Appendix 2. 

After this digression we return to subsection 2.3. Outside the solenoid the VP A may 
be presented as a gradient of some function x. As 4 Ae dl # 0 for the closed contour 
passing through the solenoid hole, this function turns out not to be single valued (more 
accurately: discontinuous). In exact terms for the toroidal solenoid ( p  - d j2+  z 2  = Ri 
the function x undergoes a jump from 4 / 2  to -4/2 when one crosses the circle of 
radius d - R lying in the z = 0 plane (i.e. in the equatorial plane of the solenoid . At 

The explicit expression for ,y may be found in [16]. The unitary transformation 

large distances it falls as rF2: x = -( 77g/4r2) dRg cos 6(g = (4/277)(d - J-4 d 2 -  R,) - 1  ). 

A = A'+grad x = $ 1  exp (2) (A2.1) 

may be used to eliminate the VP outside the solenoid. As $ is assumed to be single 
valued, $' is a non-single valued function satisfying the free SE and having discon- 
tinuities at the same place as x 

$ ' ( p  s d - R,, z = 0 - ) = exp (-::') - $ ' ( p  s d - R,, z = O + ) .  (A2.2) 

However, to find the non-single valued solution of the free Schrodinger equation is 
no easier than getting single valued solutions of the initial unabridged SE. Some profit 
may be obtained from (A2.1) when $ = $'= 0 at the discontinuity region of the x 
function. This can be achieved, for instance, by switching on the infinite repulsion 
inside the sphere S. In this case, the discontinuity condition (A2.2) becomes trivial 
( O = O )  while (A2.1) turns out to be the unitary transformation between the single 
valued wavefunction with A # 0 and A = 0. As a result, the non-vanishing of the VP 

outside S does not lead to observable consequences. It does not follow from (2.16) 
that $ = 0 inside the sphere S ;  so the transformation (A2.1) is useless. 

Appendix 3. 

Fortunately, there exists another VP A' [16, 171 which differ from zero in the immediate 
neighbourhood of the toroidal solenoid. This VP has the single non-vanishing com- 
ponent which equals A: = g In( d + m / p )  inside the solenoid. Outside it A: # 0 
only in the region / z /  < Ro,  0 s  p C d -- broken in figure 10) where it equals 
g ln[(d + m ) / ( d  --)I. An analogue of A' for the infinite cylindrical 
solenoid is also known [ 171. Its properties have recently been discussed in this journal 
[18]. The VP A and A' are connected via a single valued gauge transformation. We 
prove this fact for the infinitely thin solenoid. In this case, A:  reduces to [19] 

On the other hand, the Cartesian components of A are expressible in the form [ 16, 191 
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Figure 10. The vector potential of the toroidal solenoid in a non-Coulomb gauge. Outside 
the solenoid VP differs from zero in the dashed region only. 

A; = b S ( z ) e ( d  - P I .  

(for the thin solenoid) 

(A3.1) 

a2a a 2 a  
ax2 ay2 

A =---- a2a aza 

axaz ayaz 

dx ,  dY, 

A ,  =- A,  =- 

a = Z l l m .  
(Here integration is performed over the circle of radius d lying in the plane z = 0). 
The A ,  component may be presented in a slightly different form A, = a2a /az2  - Aa. 
Bearing in mind that A( l / l r - r , l )  = -47rfj3(r-r,) we get ha = -@(z)B(d - - p )  = -A:  

aa 

a z  
A=A’+grad-  (A3.2) 

This equation is just the desired transformation between A and  A’. 

Appendix 4. 

We now discuss the properties of the a function. The double integral occurring in the 
definition of a (A3.1) may be expressed through the linear integrals [16,20] 

= 2 T ( m - I 2 1 ) - 2 J ; I  1’ - d x  Q,,2( z 2 + d 2 + x 2 )  
OJ;; 2 d x  ‘ 

(A4.1) 

From the first line of this expression it follows that for p > d the argument y (  = p 2 +  z 2 +  
x2/2px) of the Legendre function Q-1,2 always exceeds 1 for all x in the interval 
0 s x s d. This means (as the cut of the Legendre functions coincides with the interval 
(-1, 1 ) )  that the function a and all its derivatives are continuous functions of z for 
p > d. For p < d, y acquires the value 1 for z = 0, x = p. In this case the function a and 
its derivatives may possess singularities. This explicitly demonstrates the second line 
of (A4.1). In fact the argument z 2 + x 2 +  d 2 / 2  d x  of the Ql,2 always exceeds 1 for all 
p < d. Thus for p < d all the singularities of the a function are due  to the first term of 
this line: ( 4 / 2 ) ( m - I z l ) .  The first z derivative of this expression has a finite jump 
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for z = 0 (equal to -+), while the second z derivative has a 8-type singularity ( - @ ( z ) ) .  
We know that for p >  d the function a and its derivatives have no singularities as a 
function of z. It follows from this that for p > d the singularities of the first and second 
terms in the second line of (A4.1) mutually compensate each other. 

Appendix 5. 

The singularities of the transformed wavefunction 

+ ‘ = + e x p  --- ( E) (A5.1) 

lie in the equatorial plane ( 2  = 0, p < d )  of the solenoid, which is completely inside 
the sphere S. As the gauge transformation (A3.2) eliminates the VP outside the sphere 
S, +’ satisfies the free Schrodinger equation with BC 

Thus, it coincides with the wavefunction Go defined by (2.14). After this identification 
we may return to the original wavefunction using the transformation inverse to (A5.1) 

ie aa 
IL = CLO exp( -g) (A5.2) 

As for r +  CO, aa/dz = - ( 4 d 2 / 4 r 2 )  cos 0 the transformation (A5.2) does not change the 
asymptotic behaviour of the wavefunction, and  as a consequence, leads to the same 
scattering amplitude and  cross section. We conclude: the impenetrabiiity condition 
(2.16) guarantees the absence of observable effects arising from the solenoid presence 
inside the sphere S.  

Appendix 6. 

Let the BC 

be imposed on the surface of the sphere S. Heref, is an  arbitrary single valued function. 
The space region outside S is a simply connected one. Insert into S the toroidal 
solenoid. As a result, there appears the VP A outside the sphere S. Let, in the presence 
of a solenoid inside S, the same BC (A6.1) be fulfilled on the surface of S. The gauge 
transformation (A3.2) may be used to eliminate VP outside S. According to (A5.1), the 
transformed wavefunction $A satisfies the free SE with BC 

+ & ( r =  R )  = fO(O, p) exp -- - ( :: 3 LR (A6.2) 

The free wavefunctions $o and  4;  are physically different and  this could lead to 
observable consequences. 
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The presence of a solenoid inside S becomes unobservable in two cases. First, 
when the BC on the surface of S explicitly depends on the magnetic flux inside the 
solenoid. This magnetic flux being equal to 4, the above BC should have the form 

$ ( r = R ) = f o e x p  -- (E ad:> I r = R '  
(A6.3) 

Applying to wavefunction $ the gauge transformation (A3.2), we arrive at the BC 

(A6.1) which implies the unobservability of the solenoid inside S. The second case 
takes place when the gauge invariant BC is imposed on the surface of S. The quantum 
probability current being the gauge invariant quantity, the disappearance of its normal 
component at the surface of S is a gauge invariant BC as well. The story is not complete. 
The reason is that on the surface of S we should impose the concrete realization of 
the impenetrability conditions (2.10) or (2.16). These realizations, being connected by 
the gauge transformation (A5.2), are in one-to-one correspondence with each other. 
It may happen that for A f 0 and A = 0 those particular impenetrability BC are chosen 
which are not connected by a gauge transformation. These situations are physically 
different and  this fact could in principle be verified experimentally (e.g., by the scattering 
of charged particles). The only exception is the 9 = 0 BC. In this case, the BC (2.16) is 
satisfied for any value of VP A. 

We briefly summarize the content of this rather lengthy appendix. It turns out 
that the simply connected nature of the regions of space with H = 0 does not guarantee 
the non-observability of physical effects originating from non-vanishing of A in a 
simply connected region (in spite of the possibility of eliminating A by means of a 
well behaved gauge transformation). 
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